Volcano InSAR & Pixel-Offset-Labor

Interferometrisches Synthetik-Apertur-Radar (InSAR) und die Verfolgung von Pixel-Offsets sind zentrale Techniken in unserer Geodatenanalyse und bieten beispiellose Möglichkeiten zur Überwachung und zum Verständnis von Vulkanen und Erdbeben. InSAR nutzt Phasenunterschiede in Radarbildern, die zu unterschiedlichen Zeiten aufgenommen wurden, um Bodenverformungen mit Millimetergenauigkeit zu messen, was es für Anwendungen wie tektonische Bewegungen, vulkanische Aktivitäten und die Überwachung von Bodensenkungen unverzichtbar macht. Pixel-Offset-Tracking hingegen analysiert Verschiebungen der Pixelpositionen zwischen Radar- und optischen Bildern und ermöglicht so die Erkennung größerer Verschiebungen, die mit InSAR nicht effektiv erfasst werden können, wie z. B. solche, die durch Lavadome, Ströme und andere Massenbewegungen verursacht werden.

Diese Techniken liefern umfassende und hochauflösende Daten über große und oft unzugängliche Gebiete, was unsere Möglichkeiten zur Vorhersage von Naturgefahren und zur Bewertung ihrer Auswirkungen erheblich verbessert. Die Integration von InSAR- und Pixel-Offset-Methoden ermöglicht ein detailliertes und vielschichtiges Verständnis geophysikalischer Prozesse, was genauere Risikobewertungen und fundiertere Entscheidungen für das Katastrophenmanagement und die Infrastrukturplanung erleichtert. In unserem Team werden InSAR-Techniken seit vielen Jahren im Rahmen von  Internationalen Trainingkursen  und regelmäßigen Lehrveranstaltungen an der Universität Potsdam geschult und angewendet.

Durch die Verbesserung unserer Fähigkeiten zur Überwachung der Erdoberfläche in nahezu Echtzeit, InSAR und Pixel-Offset-Tracking tragen wir zu einem besseren Verständnis von Naturkatastrophen bei.

Unser Team verfügt über eine starke Rechenleistung und Verarbeitungssoftware wie GAMMA, SarScape, SarPROZ und SNAP.

Publikationen

Valade, S., Coppola, D., Campion, R. et al. Lava dome cycles reveal rise and fall of magma column at Popocatépetl volcano. Nature Commun 14, 3254 (2023). https://doi.org/10.1038/s41467-023-38386-9

Walter, T. R. (2023): Radar Sensing of Merapi Volcano. - In: Gertisser, R., Troll, V. R., Walter, T., Nandaka, I. G. M. A., Ratdomopurbo, A. (Eds.), Merapi Volcano: Geology, Eruptive Activity, and Monitoring of a High-Risk Volcano, (Active Volcanoes of the World), Cham : Springer International Publishing, 437-456. https://doi.org/10.1007/978-3-031-15040-1_14.

EU Zorn, M Vassileva, TR Walter, H Darmawan, L Röhler, F Amelung (2023) Interactions of magmatic intrusions with the multiyear flank instability at Anak Krakatau volcano, Indonesia: Insights from InSAR and analogue modeling. Geology 51 (4), 340-344. https://doi.org/10.1130/G50693.1.

Plank, S., A.V. Shevchenko, P. d'Angelo, V. Gstaiger, P.J. Gonzalez, S. Cesca, S. Martinis, and T.R. Walter, 2023, Combining thermal, tri-stereo optical and bi-static InSAR satellite imagery for lava volume estimates: the 2021 Cumbre Vieja eruption, La Palma. Nature Scientific Reports. 13(1). https://doi.org/10.1038/s41598-023-29061-6.

Walter, T.R., E.U. Zorn, C.E. Harnett, A.V. Shevchenko, A. Belousov, M. Belousova, and M.S. Vassileva, 2022, Influence of conduit and topography complexity on spine extrusion at Shiveluch volcano, Kamchatka. Nature Communications Earth & Environment. 3(1). https://doi.org/10.1038/s43247-022-00491-w.

Munoz, V., T.R. Walter, E.U. Zorn, A.V. Shevchenko, P.J. Gonzalez, D. Reale, and E. Sansosti, 2022, Satellite Radar and Camera Time Series Reveal Transition from Aligned to Distributed Crater Arrangement during the 2021 Eruption of Cumbre Vieja, La Palma (Spain). Remote Sensing. 14(23). https://doi.org/10.3390/rs14236168.

Flovenz, O.G., R.J. Wang, G.P. Hersir, T. Dahm, S. Hainzl, M. Vassileva, V. Drouin, S. Heimann, M.P. Isken, E.A. Gudnason, K. Agustsson, T. Agustsdottir, J. Horalek, M. Motagh, T.R. Walter, E. Rivalta, P. Jousset, C.M. Krawczyk, and C. Milkereit, 2022, Cyclical geothermal unrest as a precursor to Iceland's 2021 Fagradalsfjall eruption. Nature Geoscience. 15(5): 397. https://doi.org/10.1038/s41561-022-00930-5.

Vassileva, M., D. Al-Halbouni, M. Motagh, T.R. Walter, T. Dahm, and H.U. Wetzel, 2021, A decade-long silent ground subsidence hazard culminating in a metropolitan disaster in Maceio, Brazil. Nature Scientific Reports. 11(1). https://doi.org/10.1038/s41598-021-87033-0.

Shevchenko, A.V., V.N. Dvigalo, E.U. Zorn, M.S. Vassileva, F. Massimetti, T.R. Walter, I.Y. Svirid, S.A. Chirkov, A.Y. Ozerov, V.A. Tsvetkov, and I.A. Borisov, 2021, Constructive and Destructive Processes During the 2018-2019 Eruption Episode at Shiveluch Volcano, Kamchatka, Studied From Satellite and Aerial Data. Frontiers in Earth Science. 9. https://doi.org/10.3389/feart.2021.680051. .

Mania, R., S. Cesca, T.R. Walter, I. Koulakov, and S.L. Senyukov, 2021, Inflating Shallow Plumbing System of Bezymianny Volcano, Kamchatka, Studied by InSAR and Seismicity Data Prior to the 20 December 2017 Eruption. Frontiers in Earth Science. 9. https://doi.org/10.3389/feart.2021.765668.

Ghosh, B., M. Motagh, M.H. Haghighi, M.S. Vassileva, T.R. Walter, and S. Maghsudi, 2021, Automatic Detection of Volcanic Unrest Using Blind Source Separation With a Minimum Spanning Tree Based Stability Analysis. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 14: p. 7771-7787. https://doi.org/10.1109/JSTARS.2021.3097895.

Coppola, D., L. Marco, F. Massimetti, S. Hainzl, A.V. Shevchenko, R. Mania, M. Nikolai, Shapiro, and T.R. Walter, 2021, Thermal remote sensing reveals communication between volcanoes of the Klyuchevskoy Volcanic Group. Nature Scientific Reports. 11(1). https://doi.org/10.1038/s41598-021-92542-z.

Vassileva, M.S., M. Motagh, T.R. Walter, H.U. Wetzel, and S.L. Senyukov, 2020, The 29 March 2017 Yuzhno-Ozernovskoe Kamchatka Earthquake: Fault Activity in An Extension of the East Kamchatka Fault Zone as Constrained by InSAR Observations. Bulletin of the Seismological Society of America. 110(3): p. 1101-1114. https://doi.org/10.1785/0120190174.

Shevchenko, A.V., V.N. Dvigalo, T.R. Walter, R. Mania, F. Maccaferri, I.Y. Svirid, A.B. Belousov, and M.G. Belousova, 2020, The rebirth and evolution of Bezymianny volcano, Kamchatka after the 1956 sector collapse. Nature Communications Earth & Environment. 1(1). https://doi.org/10.1038/s43247-020-00014-5.

Walter, T.R., C.E. Harnett, N. Varley, D.V. Bracamontes, J. Salzer, E.U. Zorn, M. Breton, R. Arambula, and M.E. Thomas, 2019, Imaging the 2013 explosive crater excavation and new dome formation at Volcan de Colima with TerraSAR-X, time-lapse cameras and modelling. Journal of Volcanology and Geothermal Research. 369: p. 224-237. https://doi.org/10.1016/j.jvolgeores.2018.11.016.

Walter, T.R., M.H. Haghighi, F.M. Schneider, D. Coppola, M. Motagh, J. Saul, A. Babeyko, T. Dahm, V.R. Troll, F. Tilmann, S. Heimann, S. Valade, R. Triyono, R. Khomarudin, N. Kartadinata, M. Laiolo, F. Massimetti, and P. Gaebler, 2019, Complex hazard cascade culminating in the Anak Krakatau sector collapse. Nature Communications. 10. https://doi.org/10.1038/s41467-019-12284-5.

Valade, S., A. Ley, F. Massimetti, O. D'Hondt, M. Laiolo, D. Coppola, D. Loibl, O. Hellwich, and T.R. Walter, 2019, Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System. Remote Sensing. 11(13). https://doi.org/10.3390/rs11131528.

Plank, S., T.R. Walter, S. Martinis, and S. Cesca, 2019, Growth and collapse of a littoral lava dome during the 2018/19 eruption of Kadovar Volcano, Papua New Guinea, analyzed by multi-sensor satellite imagery. Journal of Volcanology and Geothermal Research. 388. https://doi.org/10.1016/j.jvolgeores.2019.106704.

Mania, R., T.R. Walter, M. Belousova, A. Belousov, and S.L. Senyukov, 2019, Deformations and Morphology Changes Associated with the 2016-2017 Eruption Sequence at Bezymianny Volcano, Kamchatka. Remote Sensing. 11(11). https://doi.org/10.3390/rs11111278.

Diao, F.Q., X. Xiong, R.J. Wang, T.R. Walter, Y.B. Wang, and K. Wang, 2019, Slip Rate Variation Along the Kunlun Fault (Tibet): Results From New GPS Observations and a Viscoelastic Earthquake-Cycle Deformation Model. Geophysical Research Letters. 46(5): p. 2524-2533. https://doi.org/10.1029/2019GL081940.

Astort, A., T.R. Walter, F. Ruiz, L. Sagripanti, A. Nacif, G. Acosta, and A. Folguera, 2019, Unrest at Domuyo Volcano, Argentina, Detected by Geophysical and Geodetic Data and Morphometric Analysis. Remote Sensing. 11(18). https://doi.org/10.3390/rs11182175.

Richter, N., J.T. Salzer, E. de Zeeuw-van Dalfsen, D. Perissin, and T.R. Walter, 2018, Constraints on the geomorphological evolution of the nested summit craters of Lascar volcano from high spatio-temporal resolution TerraSAR-X interferometry. Bulletin of Volcanology. 80(3). https://doi.org/10.1007/s00445-018-1195-3.

Bredemeyer, S., F.G. Ulmer, T.H. Hansteen, and T.R. Walter, 2018, Radar Path Delay Effects in Volcanic Gas Plumes: The Case of Lascar Volcano, Northern Chile. Remote Sensing. 10(10). https://doi.org/10.3390/rs10101514.

Salzer, J.T., P. Milillo, N. Varley, D. Perissin, M. Pantaleo, and T.R. Walter, 2017, Evaluating links between deformation, topography and surface temperature at volcanic domes: Results from a multi-sensor study at Volcan de Colima, Mexico. Earth and Planetary Science Letters. 479: p. 354-365. https://doi.org/10.1016/j.epsl.2017.09.027.

Zhang Y, Wang R, Walter TR, Feng W, Chen Y, Huang Q (2017) Significant Lateral Dip Changes May Have Limited the Scale of the 2015 Mw7.8 Gorkha Earthquake. Geophys. Res. Lett., https://doi.org/10.1002/2017GL074095.

Nikolaeva, E., Walter, T. R. (2016): InSAR observations of the 2009 Racha earthquake, Georgia. - Natural Hazards and Earth System Sciences (NHESS), 16, p. 2137-2144. http://doi.org/10.5194/nhess-16-2137-2016.

Salzer, J. T., Thelen, W. A., James, M. R., Walter, T. R., Moran, S., Denlinger, R. (2016): Volcano dome dynamics at Mount St. Helens: Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets. - Journal of Geophysical Research, 121, 11, p. 7882-7902, http://doi.org/10.1002/2016JB013045.

F Diao, F.Q., T.R. Walter, G. Solaro, R.J. Wang, M. Bonano, M. Manzo, S. Ergintav, Y. Zheng, X. Xiong, and R. Lanari, Fault locking near Istanbul: indication of earthquake potential from InSAR and GPS observations. Geophysical Journal International, 2016. 205(1): p. 490-498. https://doi.org/10.1093/gji/ggw048.

Prats-Iraola P, Nannini M, Scheiber R, De Zan F, Wollstadt S, Minati F, Vecchioli F, Costantini M, Borgstrom S, De Martino P, Siniscalchi V, Walter TR, Foumelis M, Desnos Y-L (2015) Sentinel-1 assessment of the interferometric wide-swath mode. IEEE International, https://doi.org/10.1109/IGARSS.2015.7327018.

H Bathke, M Nikkhoo, E P Holohan, TR Walter (2015) Insights into the 3D architecture of an active caldera ring-fault atTendürek volcano through modeling of geodetic data. Earth and Planetary Science Letters 422, 157–168. https://doi.org/10.1016/j.epsl.2015.03.041.

TR Walter, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Darmawan H, Jousset P, Lühr BG, Dahm T (2015) Volcano-tectonic control of Merapi’s lava dome splitting: The November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639, 23–33. https://doi.org/10.1016/j.tecto.2014.11.007.

JT Salzer, M Nikkhoo, TR Walter, H Sudhaus, G Reyes-Dávila, M Bretón, R. Arambula (2014) Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at Volcán de Colima, Mexico. Front. Earth Sci., 27 June 2014 | https://doi.org/10.3389/feart.2014.00012.

TR Walter, M Shirzaei, A Manconi, G Solaro, A Pepe, M Manzo, E Sansosti (2014) Possible coupling of Campi Flegrei and Vesuvius as revealed by InSAR time series, correlation analysis and time dependent modeling. Journal of Volcanology and Geothermal Research 280, 1, 104–110. https://doi.org/10.1016/j.jvolgeores.2014.05.006.       

Walter TR, Motagh M (2014) Deflation and inflation of a large magma body beneath Uturuncu volcano, Bolivia? Insights from InSAR data, surface lineaments and stress modelling.  Geophys. J. Int. 198 (1), 462-473. https://doi.org/10.1093/gji/ggu080.

(for publications older than this please refer to the GFZ section 2.1 publication page)

zurück nach oben zum Hauptinhalt